基于PHP实现的多元线性回归模拟曲线算法

本篇章节讲解基于PHP实现的多元线性回归模拟曲线算法。分享给大家供大家参考,具体如下: 多元线性回归模型: 我们根据一组数据: 类似 方法:利用最小二乘法 公式: 我们只用公式的前半部分,也就是用矩阵来计算 式中的X就是arr_x,二维数组我们可以把它

本篇章节讲解基于PHP实现的多元线性回归模拟曲线算法。分享给大家供大家参考,具体如下:

多元线性回归模型:

我们根据一组数据: 类似

方法:利用最小二乘法

公式:

基于PHP实现的多元线性回归模拟曲线算法

我们只用公式的前半部分,也就是用矩阵来计算

式中的X就是arr_x,二维数组我们可以把它看成是一个矩阵,式中的y就是arr_y,也把它看成一个矩阵(5,15),不过应该是竖着写的。

然后可以根据公式我们会发现要用到矩阵的相乘,转置,求逆;所以下面的代码一一给出:

get_complement($data,$i);
if ($i % 2 === 0) {
$ans = $ans + $data[0][$i] * ($this->cal_det($data_temp));
} else {
$ans = $ans – $data[0][$i] * ($this->cal_det($data_temp));
}
}
}
return $ans;
}
/*计算矩阵的伴随矩阵*/
public function ajoint($data) {
$m = count($data);
$n = count($data[0]);
$data2 =[];
for ($i = 0; $i < $m; $i++) { for ($j = 0; $j < $n; $j++) { if (($i + $j) % 2 === 0) { $data2[$i][$j] = $this->cal_det($this->get_complement($data,$j));
} else {
$data2[$i][$j] = – $this->cal_det($this->get_complement($data,$j));
}
}
}
return $this->trans($data2);
}
/*转置矩阵*/
public function trans($data) {
$i = count($data);
$j = count($data[0]);
$data2 =[];
for ($k2 = 0; $k2 < $j; $k2++) { for ($k1 = 0; $k1 < $i; $k1++) { $data2[$k2][$k1] = $data[$k1][$k2]; } } /*将矩阵转置便可得到伴随矩阵*/ return $data2; } /*求矩阵的逆,输入参数为原矩阵*/ public function inv($data) { $m = count($data); $n = count($data[0]); $data2 =[]; $det_val = $this->cal_det($data);
$data2 = $this->ajoint($data);
for ($i = 0; $i < $m; $i++) { for ($j = 0; $j < $n; $j++) { $data2[$i][$j] = $data2[$i][$j] / $det_val; } } return $data2; } /*求两矩阵的乘积*/ public function getProduct($data1,$data2) { /*$data1 为左乘矩阵*/ $m1 = count($data1); $n1 = count($data1[0]); $m2 = count($data2); $n2 = count($data2[0]); $data_new =[]; if ($n1 !== $m2) { return false; } else { for ($i = 0; $i <= $m1 -1; $i++) { for ($k = 0; $k <= $n2 -1; $k++) { $data_new[$i][$k] = 0; for ($j = 0; $j <= $n1 -1; $j++) { $data_new[$i][$k] += $data1[$i][$j] * $data2[$j][$k]; } } } } return $data_new; } /*多元线性方程*/ public function getParams($arr_x,$arr_y) { $final =[]; $arr_x_t = $this->trans($arr_x);
$result = $this->getProduct($this->getProduct($this->inv($this->getProduct($arr_x_t,$arr_x)),$arr_x_t),$arr_y);
foreach ($result as $key => $val) {
foreach ($val as $_k => $_v) {
$final[] = $_v;
}
}
return $final;
}

最后的getParams()方法就是最后求b参数数组的方法,传入一个二维数组arr_x, 和一个一维数组arr_y就可以了。

这一般用于大数据分析,根据大数据来模拟和预测下面的发展和走势。

PS:这里为大家推荐两款相关模拟曲线工具供大家参考:

在线多项式曲线及曲线函数拟合工具:

在线绘制多项式/函数曲线图形工具:

更多关于PHP相关内容感兴趣的读者可查看本站专题:《》、《》、《》、《》、《》及《》

希望本文所述对大家PHP程序设计有所帮助。

关于作者: dawei

【声明】:石家庄站长网内容转载自互联网,其相关言论仅代表作者个人观点绝非权威,不代表本站立场。如您发现内容存在版权问题,请提交相关链接至邮箱:bqsm@foxmail.com,我们将及时予以处理。

为您推荐